226 research outputs found

    Development of a Novel Green Surfactant - Low Salinity Nanofluid for Enhanced Oil Recovery Application

    Get PDF
    Natural surfactants have been considered part of the EOR processes, given their non-toxic and environment-friendly nature. In this project, two novel natural surfactants have been extracted. Furthermore, the physical-chemical properties of novel saponins, foamability and foam stability, interfacial tension (IFT), and wettability between saponins and low salinity water (LSW) and nanoparticles have been investigated. On the other hand, the interactions of the particles (mechanisms) between saponins, salt, nanoparticles, crude oil, and formation rocks have been examined

    Generalized transfer matrix theory on electronic transport through graphene waveguide

    Full text link
    In the effective mass approximation, electronic property in graphene can be characterized by the relativistic Dirac equation. Within such a continuum model we investigate the electronic transport through graphene waveguides formed by connecting multiple segments of armchair-edged graphene nanoribbons of different widths. By using appropriate wavefunction connection conditions at the junction interfaces, we generalize the conventional transfer matrix approach to formulate the linear conductance of the graphene waveguide in terms of the structure parameters and the incident electron energy. In comparison with the tight-binding calculation, we find that the generalized transfer matrix method works well in calculating the conductance spectrum of a graphene waveguide even with a complicated structure and relatively large size. The calculated conductance spectrum indicates that the graphene waveguide exhibits a well-defined insulating band around the Dirac point, even though all the constituent ribbon segments are gapless. We attribute the occurrence of the insulating band to the antiresonance effect which is intimately associated with the edge states localized at the shoulder regions of the junctions. Furthermore, such an insulating band can be sensitively shifted by a gate voltage, which suggests a device application of the graphene waveguide as an electric nanoswitch.Comment: 11 pages, 5 figure

    Benchmarking the Physical-world Adversarial Robustness of Vehicle Detection

    Full text link
    Adversarial attacks in the physical world can harm the robustness of detection models. Evaluating the robustness of detection models in the physical world can be challenging due to the time-consuming and labor-intensive nature of many experiments. Thus, virtual simulation experiments can provide a solution to this challenge. However, there is no unified detection benchmark based on virtual simulation environment. To address this challenge, we proposed an instant-level data generation pipeline based on the CARLA simulator. Using this pipeline, we generated the DCI dataset and conducted extensive experiments on three detection models and three physical adversarial attacks. The dataset covers 7 continuous and 1 discrete scenes, with over 40 angles, 20 distances, and 20,000 positions. The results indicate that Yolo v6 had strongest resistance, with only a 6.59% average AP drop, and ASA was the most effective attack algorithm with a 14.51% average AP reduction, twice that of other algorithms. Static scenes had higher recognition AP, and results under different weather conditions were similar. Adversarial attack algorithm improvement may be approaching its 'limitation'.Comment: CVPR 2023 worksho

    Temporal and spatial change of habitat quality and its driving forces: The case of Tacheng region, China

    Get PDF
    Habitat quality assessment is an important basis for ecological restoration practice. Taking the Tacheng region as an example, the InVEST model was used to evaluate the habitat quality of the Tacheng region in five periods from 2000 to 2020, and analyze the reasons for its changes, to provide theoretical guidance for ecological restoration practice in arid areas. The conclusions were that from 2000 to 2020, the habitat quality in the Tacheng region improved slightly, and the value of the habitat index in the Tacheng region was the highest in 2010, which was 0.577, and then decreased slightly. The habitat quality in the Tacheng region was significantly influenced by land use type conversion and precipitation. The change in land use type directly affected the change in habitat quality. The study region is located in an arid area; the forest land and grassland native to the region have more vegetation communities and genera of species and can be self-sustaining and resilient to disturbance, having high scores for habitat quality. The species of arable land is a monoculture; it cannot be self-sustaining and resilient to disturbance, and though it has high vegetation cover, the value of habitat quality is lower than that of forestland and grassland. The vegetation of unused land is rare, and the ecosystem of unused land is sensitive and vulnerable; the habitat quality scores are very low. The conversion of forest land, grassland, arable land, and unused land would directly affect the value of habitat quality, and conversion was the main factor affecting the change in habitat quality. In addition, precipitation was also an important factor affecting the change in habitat quality in the Tacheng region, which affected the biomass of natural vegetation and then affected the habitat quality. The results provided the temporal and spatial change of habitat quality and its driving forces in the Tacheng region, which helps determine appropriate measures and sites in ecological restoration projects
    • …
    corecore